Cocircular Points

Time Limit: 1 Second    Memory Limit: 65536 KB

You probably know what a set of collinear points is: a set of points such that there exists a straight line that passes through all of them. A set of cocircular points is defined in the same fashion, but instead of a straight line, we ask that there is a circle such that every point of the set lies over its perimeter.

The International Collinear Points Centre (ICPC) has assigned you the following task: given a set of points, calculate the size of the larger subset of cocircular points.


Each test case is given using several lines. The first line contains an integer N representing the number of points in the set (1 ≤ N ≤ 100). Each of the next N lines contains two integers X and Y representing the coordinates of a point of the set (−104 ≤ X, Y ≤ 104). Within each test case, no two points have the same location. The last test case is followed by a line containing one zero.


For each test case output a single line with a single integer representing the number of points in one of the largest subsets of the input that are cocircular.

Sample Input

-10 0
0 -10
10 0
0 10
-20 10
-10 20
-2 4
-10000 10000
10000 10000
10000 -10000
-10000 -9999
-1 0
0 0
1 0

Sample Output


Source: Latin American Regional Contest 2010