Radar Installation
Time Limit: 1 Second Memory Limit: 32768 KB
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The
sea side is above x-axis, and the land side below. Given the position of each
island in the sea, and given the distance of the coverage of the radar installation,
your task is to write a program to find the minimal number of radar installations
to cover all the islands. Note that the position of an island is represented
by its x-y coordinates.
Input
The input consists of several test cases. The first line of each case contains
two integers n (1 n 1000) and d, where n is the number of islands in the sea
and d is the distance of coverage of the radar installation. This is followed
by n lines each containing two integers representing the coordinate of the position
of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros.
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
Sample Input
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Sample Output
Case 1: 2 Case 2: 1Submit
Source: Asia 2002, Beijing (Mainland China)