Pre-Post-erous!
Time Limit: 1 Second Memory Limit: 32768 KB
We are all familiar with pre-order, in-order and post-order traversals of binary trees. A common problem in data structure classes is to find the pre-order traversal of a binary tree when given the in-order and post-order traversals. Alternatively, you can find the post-order traversal when given the in-order and pre-order. However, in general you cannot determine the in-order traversal of a tree when given its pre-order and post-order traversals. Consider the four binary trees below:
All of these trees have the same pre-order and post-order traversals. This phenomenon is not restricted to binary trees, but holds for general m-ary trees as well.
Input
Input will consist of multiple problem instances. Each instance will consist
of a line of the form
m s1 s2
indicating that the trees are m-ary trees, s1 is the pre-order traversal and
s2 is the post-order traversal. All traversal strings will consist of lowercase
alphabetic characters. For all input instances, 1 <= m <= 20 and the length
of s1 and s2 will be between 1 and 26 inclusive. If the length of s1 is k (which
is the same as the length of s2, of course), the first k letters of the alphabet
will be used in the strings. An input line of 0 will terminate the input.
Output
For each problem instance, you should output one line containing the number of possible trees which would result in the pre-order and post-order traversals for the instance. All output values will be within the range of a 32-bit signed integer. For each problem instance, you are guaranteed that there is at least one tree with the given pre-order and post-order traversals.
Sample Input
2 abc cba 2 abc bca 10 abc bca 13 abejkcfghid jkebfghicda 0
Sample Output
4 1 45 207352860Submit
Source: East Central North America 2002