Ouroboros Snake
Time Limit: 10 Seconds Memory Limit: 32768 KB
Ouroboros is a mythical snake from ancient Egypt. It has its tail in its mouth
and continously devours itself.
The Ouroboros numbers are binary numbers of 2^n bits that have the property
of "generating" the whole set of numbers from 0 to 2^n - 1. The generation
works as follows: given an Ouroboros number, we place its 2^n bits wrapped in
a circle. Then, we can take 2^n groups of n bits starting each time with the
next bit in the circle. Such circles are called Ouroboros circles for the number
n. We will work only with the smallest
Ouroboros number for each n.
Example: for n = 2, there are only four Ouroboros numbers. These are 0011;0110;1100;
and 1001. In this case, the smallest one is 0011. Here is the Ouroboros circle
for 0011:
The table describes the function o(n;k) which calculates the k-th number in the Ouroboros circle of the smallest Ouroboros number of size n. This function is what your program should compute.
Input
The input consists of several test cases. For each test case, there will be a line containing two integers n and k (1<=n<=15; 0<=k<2^n). The end of the input file is indicated by a line containing two zeros. Don't process that line.
Output
For each test case, output o(n;k) on a line by itself.
Sample Input
2 0 2 1 2 2 2 3 0 0
Sample Output
0 1 3 2Submit
Source: Mid-Central European Regional Contest 2000