# To the Max

Time Limit: 1 Second Memory Limit: 32768 KB

**Problem**

Given a two-dimensional array of positive and negative integers, a sub-rectangle
is any contiguous sub-array of size 1 x 1 or greater located within the whole
array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the
maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

is in the lower left corner:

9 2

-4 1

-1 8

and has a sum of 15.

## Input

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].## Output

Output the sum of the maximal sub-rectangle.

## Sample Input

4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2

## Sample Output

15Submit

Source: Greater New York 2001